Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two's complement overflow indicator S: N V, For signed tests H: Half Carry Flag T: Transfer bit used by BLD and BST instructions I: Global Interrupt Enable/Disable Flag 8-bit Instruction Set Registers and Operands Rd: Destination (and source) register in the Register File Rr: Source register in the Register File R: Result after instruction is executed K: Constant data k: Constant address b: Bit in the Register File or I/O Register (3-bit) s: Bit in the Status Register (3-bit) X,Y,Z: Indirect Address Register (X=R27:R26, Y=R29:R28 and Z=R31:R30) A: I/O location address q: Displacement for direct addressing (6-bit) Rev. 0856E-AVR-11/05 1 I/O Registers RAMPX, RAMPY, RAMPZ Registers concatenated with the X-, Y-, and Z-registers enabling indirect addressing of the whole data space on MCUs with more than 64K bytes data space, and constant data fetch on MCUs with more than 64K bytes program space. RAMPD Register concatenated with the Z-register enabling direct addressing of the whole data space on MCUs with more than 64K bytes data space. EIND Register concatenated with the Z-register enabling indirect jump and call to the whole program space on MCUs with more than 64K words (128K bytes) program space. Stack STACK: Stack for return address and pushed registers SP: Stack Pointer to STACK Flags : Flag affected by instruction 0: Flag cleared by instruction 1: Flag set by instruction -: Flag not affected by instruction 2 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set The Program and Data Addressing Modes The AVR Enhanced RISC microcontroller supports powerful and efficient addressing modes for access to the Program memory (Flash) and Data memory (SRAM, Register file, I/O Memory, and Extended I/O Memory). This section describes the various addressing modes supported by the AVR architecture. In the following figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits. To generalize, the abstract terms RAMEND and FLASHEND have been used to represent the highest location in data and program space, respectively. Note: Not all addressing modes are present in all devices. Refer to the device spesific instruction summary. Register Direct, Single Register Rd Figure 1. Direct Single Register Addressing The operand is contained in register d (Rd). Register Direct, Two Registers Rd and Rr Figure 2. Direct Register Addressing, Two Registers Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd). 3 0856E-AVR-11/05 I/O Direct Figure 3. I/O Direct Addressing Operand address is contained in 6 bits of the instruction word. n is the destination or source register address. Note: Some complex AVR Microcontrollers have more peripheral units than can be supported within the 64 locations reserved in the opcode for I/O direct addressing. The extended I/O memory from address 64 to 255 can only be reached by data addressing, not I/O addressing. Data Direct Figure 4. Direct Data Addressing Data Space 20 19 31 OP 16 0x0000 Rr/Rd Data Address 15 0 RAMEND A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source register. 4 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Data Indirect with Displacement Figure 5. Data Indirect with Displacement Data Space 0x0000 15 0 Y OR Z - REGISTER 15 10 OP 6 5 Rr/Rd 0 q RAMEND Operand address is the result of the Y- or Z-register contents added to the address contained in 6 bits of the instruction word. Rd/Rr specify the destination or source register. Data Indirect Figure 6. Data Indirect Addressing Data Space 0x0000 15 0 X, Y OR Z - REGISTER RAMEND Operand address is the contents of the X-, Y-, or the Z-register. In AVR devices without SRAM, Data Indirect Addressing is called Register Indirect Addressing. Register Indirect Addressing is a subset of Data Indirect Addressing since the data space form 0 to 31 is the Register File. 5 0856E-AVR-11/05 Data Indirect with Pre-decrement Figure 7. Data Indirect Addressing with Pre-decrement Data Space 0x0000 15 0 X, Y OR Z - REGISTER -1 RAMEND The X,- Y-, or the Z-register is decremented before the operation. Operand address is the decremented contents of the X-, Y-, or the Z-register. Data Indirect with Post-increment Figure 8. Data Indirect Addressing with Post-increment Data Space 0x0000 15 0 X, Y OR Z - REGISTER 1 RAMEND The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-, Y-, or the Z-register prior to incrementing. 6 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Program Memory Constant Addressing using the LPM, ELPM, and SPM Instructions Figure 9. Program Memory Constant Addressing 0x0000 LSB FLASHEND Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. For LPM, the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). For SPM, the LSB should be cleared. If ELPM is used, the RAMPZ Register is used to extend the Z-register. Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction Figure 10. Program Memory Addressing with Post-increment 0x0000 LSB 1 FLASHEND Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. The LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM Z+ is used, the RAMPZ Register is used to extend the Z-register. 7 0856E-AVR-11/05 Direct Program Addressing, JMP and CALL Figure 11. Direct Program Memory Addressing 31 16 OP 0x0000 6 MSB 16 LSB 15 0 21 0 PC FLASHEND Program execution continues at the address immediate in the instruction word. Indirect Program Addressing, IJMP and ICALL Figure 12. Indirect Program Memory Addressing 0x0000 15 0 PC FLASHEND Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Zregister). 8 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Relative Program Addressing, RJMP and RCALL Figure 13. Relative Program Memory Addressing 0x0000 1 FLASHEND Program execution continues at address PC + k + 1. The relative address k is from -2048 to 2047. 9 0856E-AVR-11/05 Conditional Branch Summary Test Boolean Rd > Rr Z*(N V) = 0 Rd Rr Complementary Boolean BRLT(1) Rd Rr Z+(N V) = 1 (N V) = 0 BRGE Rd < Rr Rd = Rr Z=1 BREQ Rd Rr Rd Rr Z+(N V) = 1 Rd < Rr (N V) = 1 Rd > Rr C+Z=0 Mnemonic Mnemonic Comment BRGE* Signed (N V) = 1 BRLT Signed Z=0 BRNE Signed Rd > Rr Z*(N V) = 0 BRLT* Signed BRLT Rd Rr (N V) = 0 BRGE Signed BRLO(1) Rd Rr C+Z=1 BRSH* Unsigned BRGE (1) Rd Rr C=0 BRSH/BRCC Rd < Rr C=1 BRLO/BRCS Unsigned Rd = Rr Z=1 BREQ Rd Rr Z=0 BRNE Unsigned Rd Rr C+Z=1 BRSH(1) Rd > Rr C+Z=0 BRLO* Unsigned Rd < Rr C=1 BRLO/BRCS Rd Rr C=0 BRSH/BRCC Unsigned Carry C=1 BRCS No carry C=0 BRCC Simple Negative N=1 BRMI Positive N=0 BRPL Simple Overflow V=1 BRVS No overflow V=0 BRVC Simple Zero Z=1 BREQ Not zero Z=0 BRNE Simple Note: 10 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr CP Rr,Rd AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Complete Instruction Set Summary Instruction Set Summary Mnemonics Operands Description Operation Flags #Clock Note Arithmetic and Logic Instructions ADD Rd, Rr Add without Carry Rd Rd + Rr Z,C,N,V,S,H 1 ADC Rd, Rr Add with Carry Rd Rd + Rr + C Z,C,N,V,S,H 1 ADIW Rd, K Add Immediate to Word Rd+1:Rd Rd+1:Rd + K Z,C,N,V,S 2 (1) SUB Rd, Rr Subtract without Carry Rd Rd - Rr Z,C,N,V,S,H 1 SUBI Rd, K Subtract Immediate Rd Rd - K Z,C,N,V,S,H 1 SBC Rd, Rr Subtract with Carry Rd Rd - Rr - C Z,C,N,V,S,H 1 SBCI Rd, K Subtract Immediate with Carry Rd Rd - K - C Z,C,N,V,S,H 1 SBIW Rd, K Subtract Immediate from Word Rd+1:Rd Rd+1:Rd - K Z,C,N,V,S 2 (1) AND Rd, Rr Logical AND Rd Rd * Rr Z,N,V,S 1 ANDI Rd, K Logical AND with Immediate Rd Rd * K Z,N,V,S 1 OR Rd, Rr Logical OR Rd Rd v Rr Z,N,V,S 1 ORI Rd, K Logical OR with Immediate Rd Rd v K Z,N,V,S 1 EOR Rd, Rr Exclusive OR Rd Rd Rr Z,N,V,S 1 COM Rd One's Complement Rd $FF - Rd Z,C,N,V,S 1 NEG Rd Two's Complement Rd $00 - Rd Z,C,N,V,S,H 1 SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V,S 1 CBR Rd,K Clear Bit(s) in Register Rd Rd * ($FFh - K) Z,N,V,S 1 INC Rd Increment Rd Rd + 1 Z,N,V,S 1 DEC Rd Decrement Rd Rd - 1 Z,N,V,S 1 TST Rd Test for Zero or Minus Rd Rd * Rd Z,N,V,S 1 CLR Rd Clear Register Rd Rd Rd Z,N,V,S 1 SER Rd Set Register Rd $FF None 1 MUL Rd,Rr Multiply Unsigned R1:R0 Rd x Rr (UU) Z,C 2 (1) MULS Rd,Rr Multiply Signed R1:R0 Rd x Rr (SS) Z,C 2 (1) MULSU Rd,Rr Multiply Signed with Unsigned R1:R0 Rd x Rr (SU) Z,C 2 (1) FMUL Rd,Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr)<<1 (UU) Z,C 2 (1) FMULS Rd,Rr Fractional Multiply Signed R1:R0 (Rd x Rr)<<1 (SS) Z,C 2 (1) FMULSU Rd,Rr Fractional Multiply Signed with Unsigned R1:R0 (Rd x Rr)<<1 (SU) Z,C 2 (1) Branch Instructions RJMP IJMP k Relative Jump PC PC + k + 1 None 2 Indirect Jump to (Z) PC(15:0) Z, PC(21:16) 0 None 2 (1) 11 0856E-AVR-11/05 Instruction Set Summary (Continued) Mnemonics Operands EIJMP Description Operation Flags #Clock Note Extended Indirect Jump to (Z) PC(15:0) Z, PC(21:16) EIND None 2 (1) JMP k Jump PC k None 3 (1) RCALL k Relative Call Subroutine PC PC + k + 1 None 3 / 4 (4) ICALL Indirect Call to (Z) PC(15:0) Z, PC(21:16) 0 None 3 / 4 (1)(4) EICALL Extended Indirect Call to (Z) PC(15:0) Z, PC(21:16) EIND None 4 (1)(4) Call Subroutine PC k None 4 / 5 (1)(4) RET Subroutine Return PC STACK None 4 / 5 (4) RETI Interrupt Return PC STACK I 4 / 5 (4) CALL k CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3 CP Rd,Rr Compare Rd - Rr Z,C,N,V,S,H 1 CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,S,H 1 CPI Rd,K Compare with Immediate Rd - K Z,C,N,V,S,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3 SBIC A, b Skip if Bit in I/O Register Cleared if(I/O(A,b)=0) PC PC + 2 or 3 None 1/2/3 SBIS A, b Skip if Bit in I/O Register Set If(I/O(A,b)=1) PC PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC PC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC PC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2 BRLT k Branch if Less Than, Signed if (N V= 1) then PC PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2 12 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Instruction Set Summary (Continued) Mnemonics Operands Description Operation Flags #Clock Note BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2 Data Transfer Instructions MOV Rd, Rr Copy Register Rd Rr None 1 MOVW Rd, Rr Copy Register Pair Rd+1:Rd Rr+1:Rr None 1 (1) LDI Rd, K Load Immediate Rd K None 1 LDS Rd, k Load Direct from data space Rd (k) None 2 (1)(4) LD Rd, X Load Indirect Rd (X) None 2 (2)(4) LD Rd, X+ Load Indirect and Post-Increment Rd (X), X X + 1 None 2 (2)(4) LD Rd, -X Load Indirect and Pre-Decrement X X - 1, Rd (X) None 2 (2)(4) LD Rd, Y Load Indirect Rd (Y) None 2 (2)(4) LD Rd, Y+ Load Indirect and Post-Increment Rd (Y), Y Y + 1 None 2 (2)(4) LD Rd, -Y Load Indirect and Pre-Decrement Y Y - 1, Rd (Y) None 2 (2)(4) LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2 (1)(4) LD Rd, Z Load Indirect Rd (Z) None 2 (2)(4) LD Rd, Z+ Load Indirect and Post-Increment Rd (Z), Z Z+1 None 2 (2)(4) LD Rd, -Z Load Indirect and Pre-Decrement Z Z - 1, Rd (Z) None 2 (2)(4) LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2 (1)(4) STS k, Rr Store Direct to data space (k) Rd None 2 (1)(4) ST X, Rr Store Indirect (X) Rr None 2 (2)(4) ST X+, Rr Store Indirect and Post-Increment (X) Rr, X X + 1 None 2 (2)(4) ST -X, Rr Store Indirect and Pre-Decrement X X - 1, (X) Rr None 2 (2)(4) ST Y, Rr Store Indirect (Y) Rr None 2 (2)(4) ST Y+, Rr Store Indirect and Post-Increment (Y) Rr, Y Y + 1 None 2 (2)(4) ST -Y, Rr Store Indirect and Pre-Decrement Y Y - 1, (Y) Rr None 2 (2)(4) STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2 (1)(4) ST Z, Rr Store Indirect (Z) Rr None 2 (2)(4) ST Z+, Rr Store Indirect and Post-Increment (Z) Rr, Z Z + 1 None 2 (2)(4) ST -Z, Rr Store Indirect and Pre-Decrement Z Z - 1, (Z) Rr None 2 (2)(4) STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2 (1)(4) Load Program Memory R0 (Z) None 3 (3) LPM LPM Rd, Z Load Program Memory Rd (Z) None 3 (3) LPM Rd, Z+ Load Program Memory and PostIncrement Rd (Z), Z Z + 1 None 3 (3) Extended Load Program Memory R0 (RAMPZ:Z) None 3 (1) Extended Load Program Memory Rd (RAMPZ:Z) None 3 (1) ELPM ELPM Rd, Z 13 0856E-AVR-11/05 Instruction Set Summary (Continued) Mnemonics Operands Description Operation Flags #Clock Note ELPM Rd, Z+ Extended Load Program Memory and Post-Increment Rd (RAMPZ:Z), Z Z + 1 None 3 (1) Store Program Memory (Z) R1:R0 None - (1) SPM IN Rd, A In From I/O Location Rd I/O(A) None 1 OUT A, Rr Out To I/O Location I/O(A) Rr None 1 PUSH Rr Push Register on Stack STACK Rr None 2 (1) POP Rd Pop Register from Stack Rd STACK None 2 (1) Bit and Bit-test Instructions LSL Rd Logical Shift Left Rd(n+1)Rd(n),Rd(0)0,CRd(7) Z,C,N,V,H 1 LSR Rd Logical Shift Right Rd(n)Rd(n+1),Rd(7)0,CRd(0) Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1)Rd(n),CRd(7) Z,C,N,V,H 1 ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n)Rd(n+1),CRd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0) Rd(7..4) None 1 BSET s Flag Set SREG(s) 1 SREG(s) 1 BCLR s Flag Clear SREG(s) 0 SREG(s) 1 SBI A, b Set Bit in I/O Register I/O(A, b) 1 None 2 CBI A, b Clear Bit in I/O Register I/O(A, b) 0 None 2 BST Rr, b Bit Store from Register to T T Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) T None 1 SEC Set Carry C1 C 1 CLC Clear Carry C0 C 1 SEN Set Negative Flag N1 N 1 CLN Clear Negative Flag N0 N 1 SEZ Set Zero Flag Z1 Z 1 CLZ Clear Zero Flag Z0 Z 1 SEI Global Interrupt Enable I1 I 1 CLI Global Interrupt Disable I0 I 1 SES Set Signed Test Flag S1 S 1 CLS Clear Signed Test Flag S0 S 1 SEV Set Two's Complement Overflow V1 V 1 CLV Clear Two's Complement Overflow V0 V 1 SET Set T in SREG T1 T 1 CLT Clear T in SREG T0 T 1 SEH Set Half Carry Flag in SREG H1 H 1 CLH Clear Half Carry Flag in SREG H0 H 1 14 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Instruction Set Summary (Continued) Mnemonics Operands Description Operation Flags #Clock Note None 1 (1) None 1 MCU Control Instructions BREAK Break NOP No Operation SLEEP Sleep (see specific descr. for Sleep) None 1 WDR Watchdog Reset (see specific descr. for WDR) None 1 Notes: (See specific descr. for BREAK) 1. This instruction is not available in all devices. Refer to the device specific instruction set summary. 2. Not all variants of this instruction are available in all devices. Refer to the device specific instruction set summary. 3. Not all variants of the LPM instruction are available in all devices. Refer to the device specific instruction set summary. The LPM instruction is not implemented at all in the AT90S1200 device. 4. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface. For LD, ST, LDS, STS, PUSH, POP, add one cycle plus one cycle for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI in devices with 16-bit PC, add three cycles plus two cycles for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI in devices with 22-bit PC, add five cycles plus three cycles for each wait state. 15 0856E-AVR-11/05 ADC - Add with Carry Description: Adds two registers and the contents of the C Flag and places the result in the destination register Rd. Operation: Rd Rd + Rr + C (i) (i) Syntax: Operands: Program Counter: ADC Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0001 11rd dddd rrrr Status Register (SREG) Boolean Formula: I T H S V N Z C - - H: Rd3*Rr3+Rr3*R3+R3*Rd3 Set if there was a carry from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7*Rr7*R7+Rd7*Rr7*R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4 *R3 *R2 *R1 *R0 Set if the result is $00; cleared otherwise. C: Rd7*Rr7+Rr7*R7+R7*Rd7 Set if there was carry from the MSB of the result; cleared otherwise. R (Result) equals Rd after the operation. Example: ; Add R1:R0 to R3:R2 add r2,r0 ; Add low byte adc r3,r1 ; Add with carry high byte Words: 1 (2 bytes) Cycles: 1 16 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set ADD - Add without Carry Description: Adds two registers without the C Flag and places the result in the destination register Rd. Operation: Rd Rd + Rr (i) (i) Syntax: Operands: Program Counter: ADD Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0000 11rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: Rd3*Rr3+Rr3*R3+R3*Rd3 Set if there was a carry from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7*Rr7*R7+Rd7*Rr7*R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4 *R3 *R2 *R1 *R0 Set if the result is $00; cleared otherwise. C: Rd7 *Rr7 +Rr7 *R7+ R7 *Rd7 Set if there was carry from the MSB of the result; cleared otherwise. R (Result) equals Rd after the operation. Example: add r1,r2 ; Add r2 to r1 (r1=r1+r2) add r28,r28 ; Add r28 to itself (r28=r28+r28) Words: 1 (2 bytes) Cycles: 1 17 0856E-AVR-11/05 ADIW - Add Immediate to Word Description: Adds an immediate value (0 - 63) to a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the pointer registers. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: Rd+1:Rd Rd+1:Rd + K (i) (i) Syntax: Operands: Program Counter: ADIW Rd+1:Rd,K d {24,26,28,30}, 0 K 63 PC PC + 1 16-bit Opcode: 1001 0110 KKdd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - S: N V, For signed tests. V: Rdh7 * R15 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R15 Set if MSB of the result is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. C: R15 * Rdh7 Set if there was carry from the MSB of the result; cleared otherwise. R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0). Example: adiw r25:24,1 ; Add 1 to r25:r24 adiw ZH:ZL,63 ; Add 63 to the Z-pointer(r31:r30) Words: 1 (2 bytes) Cycles: 2 18 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set AND - Logical AND Description: Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination register Rd. Operation: Rd Rd * Rr (i) (i) Syntax: Operands: Program Counter: AND Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0010 00rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6 *R5 *R4 *R3* R2 *R1 *R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: and r2,r3 ; Bitwise and r2 and r3, result in r2 ldi r16,1 ; Set bitmask 0000 0001 in r16 and r2,r16 ; Isolate bit 0 in r2 Words: 1 (2 bytes) Cycles: 1 19 0856E-AVR-11/05 ANDI - Logical AND with Immediate Description: Performs the logical AND between the contents of register Rd and a constant and places the result in the destination register Rd. Operation: Rd Rd * K (i) (i) Syntax: Operands: Program Counter: ANDI Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 0111 KKKK dddd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6* R5*R4 *R3* R2* R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: andi r17,$0F ; Clear upper nibble of r17 andi r18,$10 ; Isolate bit 4 in r18 andi r19,$AA ; Clear odd bits of r19 Words: 1 (2 bytes) Cycles: 1 20 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set ASR - Arithmetic Shift Right Description: Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C Flag of the SREG. This operation effectively divides a signed value by two without changing its sign. The Carry Flag can be used to round the result. Operation: (i) b7-------------------b0 (i) C Syntax: Operands: Program Counter: ASR Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0101 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - S: N V, For signed tests. V: N C (For N and C after the shift) N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6 *R5* R4 *R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. C: Rd0 Set if, before the shift, the LSB of Rd was set; cleared otherwise. R (Result) equals Rd after the operation. Example: ldi r16,$10 ; Load decimal 16 into r16 asr r16 ; r16=r16 / 2 ldi r17,$FC ; Load -4 in r17 asr r17 ; r17=r17/2 Words: 1 (2 bytes) Cycles: 1 21 0856E-AVR-11/05 BCLR - Bit Clear in SREG Description: Clears a single Flag in SREG. Operation: SREG(s) 0 (i) (i) Syntax: Operands: Program Counter: BCLR s 0s7 PC PC + 1 16-bit Opcode: 1001 0100 1sss 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C I: 0 if s = 7; Unchanged otherwise. T: 0 if s = 6; Unchanged otherwise. H: 0 if s = 5; Unchanged otherwise. S: 0 if s = 4; Unchanged otherwise. V: 0 if s = 3; Unchanged otherwise. N: 0 if s = 2; Unchanged otherwise. Z: 0 if s = 1; Unchanged otherwise. C: 0 if s = 0; Unchanged otherwise. Example: bclr 0 ; Clear Carry Flag bclr 7 ; Disable interrupts Words: 1 (2 bytes) Cycles: 1 22 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BLD - Bit Load from the T Flag in SREG to a Bit in Register Description: Copies the T Flag in the SREG (Status Register) to bit b in register Rd. Operation: Rd(b) T (i) (i) Syntax: Operands: Program Counter: BLD Rd,b 0 d 31, 0 b 7 PC PC + 1 16 bit Opcode: 1111 100d dddd 0bbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: ; Copy bit bst r1,2 ; Store bit 2 of r1 in T Flag bld r0,4 ; Load T Flag into bit 4 of r0 Words: 1 (2 bytes) Cycles: 1 23 0856E-AVR-11/05 BRBC - Branch if Bit in SREG is Cleared Description: Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. Operation: If SREG(s) = 0 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRBC s,k 0 s 7, -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk ksss Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: cpi r20,5 brbc 1,noteq ; Compare r20 to the value 5 ; Branch if Zero Flag cleared ... noteq:nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 24 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRBS - Branch if Bit in SREG is Set Description: Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. Operation: If SREG(s) = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRBS s,k 0 s 7, -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk ksss Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: bst r0,3 ; Load T bit with bit 3 of r0 brbs 6,bitset ; Branch T bit was set ... bitset: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 25 0856E-AVR-11/05 BRCC - Branch if Carry Cleared Description: Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 0,k). Operation: If C = 0 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRCC k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: add r22,r23 brcc nocarry ; Add r23 to r22 ; Branch if carry cleared ... nocarry: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 26 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRCS - Branch if Carry Set Description: Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 0,k). Operation: If C = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRCS k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: cpi r26,$56 brcs carry ; Compare r26 with $56 ; Branch if carry set ... carry: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 27 0856E-AVR-11/05 BREAK - Break Description: The BREAK instruction is used by the On-chip Debug system, and is normally not used in the application software. When the BREAK instruction is executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip Debugger access to internal resources. If any Lock bits are set, or either the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK instruction as a NOP and will not enter the Stopped mode. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) On-chip Debug system break. (i) Syntax: Operands: Program Counter: BREAK None PC PC + 1 16-bit Opcode: 1001 0101 1001 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Words: 1 (2 bytes) Cycles: 1 28 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BREQ - Branch if Equal Description: Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed binary number represented in Rd was equal to the unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 1,k). Operation: If Rd = Rr (Z = 1) then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BREQ k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: cp r1,r0 breq equal ; Compare registers r1 and r0 ; Branch if registers equal ... equal: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 29 0856E-AVR-11/05 BRGE - Branch if Greater or Equal (Signed) Description: Conditional relative branch. Tests the Signed Flag (S) and branches relatively to PC if S is cleared. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary number represented in Rd was greater than or equal to the signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 4,k). Operation: If Rd Rr (N V = 0) then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRGE k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k100 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: cp r11,r12 brge greateq ; Compare registers r11 and r12 ; Branch if r11 r12 (signed) ... greateq: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 30 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRHC - Branch if Half Carry Flag is Cleared Description: Conditional relative branch. Tests the Half Carry Flag (H) and branches relatively to PC if H is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 5,k). Operation: If H = 0 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRHC k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k101 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: brhc hclear ; Branch if Half Carry Flag cleared ... hclear: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 31 0856E-AVR-11/05 BRHS - Branch if Half Carry Flag is Set Description: Conditional relative branch. Tests the Half Carry Flag (H) and branches relatively to PC if H is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 5,k). Operation: If H = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRHS k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k101 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: brhs hset ; Branch if Half Carry Flag set ... hset: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 32 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRID - Branch if Global Interrupt is Disabled Description: Conditional relative branch. Tests the Global Interrupt Flag (I) and branches relatively to PC if I is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 7,k). Operation: If I = 0 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRID k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: brid intdis ; Branch if interrupt disabled ... intdis: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 33 0856E-AVR-11/05 BRIE - Branch if Global Interrupt is Enabled Description: Conditional relative branch. Tests the Global Interrupt Flag (I) and branches relatively to PC if I is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 7,k). Operation: If I = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRIE k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: brie inten ; Branch if interrupt enabled ... inten: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 34 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRLO - Branch if Lower (Unsigned) Description: Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned binary number represented in Rd was smaller than the unsigned binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 0,k). Operation: If Rd < Rr (C = 1) then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRLO k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: loop: eor r19,r19 ; Clear r19 inc r19 ; Increase r19 ... cpi r19,$10 ; Compare r19 with $10 brlo loop ; Branch if r19 < $10 (unsigned) nop ; Exit from loop (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 35 0856E-AVR-11/05 BRLT - Branch if Less Than (Signed) Description: Conditional relative branch. Tests the Signed Flag (S) and branches relatively to PC if S is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary number represented in Rd was less than the signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 4,k). Operation: If Rd < Rr (N V = 1) then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRLT k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k100 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: cp r16,r1 brlt less ; Compare r16 to r1 ; Branch if r16 < r1 (signed) ... less: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 36 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRMI - Branch if Minus Description: Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 2,k). Operation: If N = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRMI k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k010 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: subi r18,4 ; Subtract 4 from r18 brmi negative ; Branch if result negative ... negative: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 37 0856E-AVR-11/05 BRNE - Branch if Not Equal Description: Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is cleared. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 1,k). Operation: If Rd Rr (Z = 0) then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRNE k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: loop: eor r27,r27 ; Clear r27 inc r27 ; Increase r27 cpi r27,5 ; Compare r27 to 5 brne loop ; Branch if r27<>5 ... nop ; Loop exit (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 38 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRPL - Branch if Plus Description: Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 2,k). Operation: If N = 0 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRPL k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k010 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: subi r26,$50 ; Subtract $50 from r26 brpl positive ; Branch if r26 positive ... positive: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 39 0856E-AVR-11/05 BRSH - Branch if Same or Higher (Unsigned) Description: Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. If the instruction is executed immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 0,k). Operation: If Rd Rr (C = 0) then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRSH k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: subi r19,4 ; Subtract 4 from r19 brsh highsm ; Branch if r19 >= 4 (unsigned) ... highsm: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 40 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRTC - Branch if the T Flag is Cleared Description: Conditional relative branch. Tests the T Flag and branches relatively to PC if T is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 6,k). Operation: If T = 0 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRTC k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k110 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: bst r3,5 ; Store bit 5 of r3 in T Flag brtc tclear ; Branch if this bit was cleared ... tclear: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 41 0856E-AVR-11/05 BRTS - Branch if the T Flag is Set Description: Conditional relative branch. Tests the T Flag and branches relatively to PC if T is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 6,k). Operation: If T = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRTS k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k110 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: bst r3,5 brts tset ; Store bit 5 of r3 in T Flag ; Branch if this bit was set ... tset: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 42 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BRVC - Branch if Overflow Cleared Description: Conditional relative branch. Tests the Overflow Flag (V) and branches relatively to PC if V is cleared. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 3,k). Operation: (i) If V = 0 then PC PC + k + 1, else PC PC + 1 Syntax: Operands: Program Counter: (i) BRVC k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 01kk kkkk k011 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: add r3,r4 brvc noover ; Add r4 to r3 ; Branch if no overflow ... noover: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 43 0856E-AVR-11/05 BRVS - Branch if Overflow Set Description: Conditional relative branch. Tests the Overflow Flag (V) and branches relatively to PC if V is set. This instruction branches relatively to PC in either direction (PC - 63 destination PC + 64). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 3,k). Operation: If V = 1 then PC PC + k + 1, else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: BRVS k -64 k +63 PC PC + k + 1 PC PC + 1, if condition is false 16-bit Opcode: 1111 00kk kkkk k011 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: add r3,r4 ; Add r4 to r3 brvs overfl ; Branch if overflow ... overfl: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false 2 if condition is true 44 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set BSET - Bit Set in SREG Description: Sets a single Flag or bit in SREG. Operation: SREG(s) 1 (i) (i) Syntax: Operands: Program Counter: BSET s 0s7 PC PC + 1 16-bit Opcode: 1001 0100 0sss 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C I: 1 if s = 7; Unchanged otherwise. T: 1 if s = 6; Unchanged otherwise. H: 1 if s = 5; Unchanged otherwise. S: 1 if s = 4; Unchanged otherwise. V: 1 if s = 3; Unchanged otherwise. N: 1 if s = 2; Unchanged otherwise. Z: 1 if s = 1; Unchanged otherwise. C: 1 if s = 0; Unchanged otherwise. Example: bset 6 ; Set T Flag bset 7 ; Enable interrupt Words: 1 (2 bytes) Cycles: 1 45 0856E-AVR-11/05 BST - Bit Store from Bit in Register to T Flag in SREG Description: Stores bit b from Rd to the T Flag in SREG (Status Register). Operation: T Rd(b) (i) (i) Syntax: Operands: Program Counter: BST Rd,b 0 d 31, 0 b 7 PC PC + 1 16-bit Opcode: 1111 101d dddd 0bbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - T: 0 if bit b in Rd is cleared. Set to 1 otherwise. Example: ; Copy bit bst r1,2 ; Store bit 2 of r1 in T Flag bld r0,4 ; Load T into bit 4 of r0 Words: 1 (2 bytes) Cycles: 1 46 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CALL - Long Call to a Subroutine Description: Calls to a subroutine within the entire Program memory. The return address (to the instruction after the CALL) will be stored onto the Stack. (See also RCALL). The Stack Pointer uses a post-decrement scheme during CALL. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) (ii) PC k PC k Devices with 16 bits PC, 128K bytes Program memory maximum. Devices with 22 bits PC, 8M bytes Program memory maximum. Syntax: Operands: Program Counter Stack: (i) CALL k 0 k < 64K PC k STACK PC+2 SP SP-2, (2 bytes, 16 bits) (ii) CALL k 0 k < 4M PC k STACK PC+2 SP SP-3 (3 bytes, 22 bits) 32-bit Opcode: 1001 010k kkkk 111k kkkk kkkk kkkk kkkk Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: mov r16,r0 ; Copy r0 to r16 call check ; Call subroutine nop ; Continue (do nothing) ... check: cpi breq r16,$42 ; Check if r16 has a special value error ; Branch if equal ret ; Return from subroutine ... error: rjmp error ; Infinite loop Words: 2 (4 bytes) Cycles: 4, devices with 16 bit PC 5, devices with 22 bit PC 47 0856E-AVR-11/05 CBI - Clear Bit in I/O Register Description: Clears a specified bit in an I/O Register. This instruction operates on the lower 32 I/O Registers - addresses 0-31. Operation: I/O(A,b) 0 (i) (i) Syntax: Operands: Program Counter: CBI A,b 0 A 31, 0 b 7 PC PC + 1 16-bit Opcode: 1001 1000 AAAA Abbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: cbi $12,7 ; Clear bit 7 in Port D Words: 1 (2 bytes) Cycles: 2 48 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CBR - Clear Bits in Register Description: Clears the specified bits in register Rd. Performs the logical AND between the contents of register Rd and the complement of the constant mask K. The result will be placed in register Rd. Operation: Rd Rd * ($FF - K) (i) (i) Syntax: Operands: Program Counter: CBR Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: (see ANDI with K complemented) Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: cbr r16,$F0 ; Clear upper nibble of r16 cbr r18,1 ; Clear bit 0 in r18 Words: 1 (2 bytes) Cycles: 1 49 0856E-AVR-11/05 CLC - Clear Carry Flag Description: Clears the Carry Flag (C) in SREG (Status Register). Operation: C0 (i) (i) Syntax: Operands: Program Counter: CLC None PC PC + 1 16-bit Opcode: 1001 0100 1000 1000 Status Register (SREG) and Boolean Formula: C: I T H S V N Z C - - - - - - - 0 0 Carry Flag cleared Example: add r0,r0 clc ; Add r0 to itself ; Clear Carry Flag Words: 1 (2 bytes) Cycles: 1 50 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CLH - Clear Half Carry Flag Description: Clears the Half Carry Flag (H) in SREG (Status Register). Operation: H0 (i) (i) Syntax: Operands: Program Counter: CLH None PC PC + 1 16-bit Opcode: 1001 0100 1101 1000 Status Register (SREG) and Boolean Formula: H: I T H S V N Z C - - 0 - - - - - 0 Half Carry Flag cleared Example: clh ; Clear the Half Carry Flag Words: 1 (2 bytes) Cycles: 1 51 0856E-AVR-11/05 CLI - Clear Global Interrupt Flag Description: Clears the Global Interrupt Flag (I) in SREG (Status Register). The interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. Operation: I0 (i) (i) Syntax: Operands: Program Counter: CLI None PC PC + 1 16-bit Opcode: 1001 0100 1111 1000 Status Register (SREG) and Boolean Formula: I: I T H S V N Z C 0 - - - - - - - 0 Global Interrupt Flag cleared Example: in temp, SREG ; Store SREG value (temp must be defined by user) cli ; Disable interrupts during timed sequence sbi EECR, EEMWE ; Start EEPROM write sbi EECR, EEWE out SREG, temp ; Restore SREG value (I-Flag) Words: 1 (2 bytes) Cycles: 1 52 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CLN - Clear Negative Flag Description: Clears the Negative Flag (N) in SREG (Status Register). Operation: N0 (i) (i) Syntax: Operands: Program Counter: CLN None PC PC + 1 16-bit Opcode: 1001 0100 1010 1000 Status Register (SREG) and Boolean Formula: N: I T H S V N Z C - - - - - 0 - - 0 Negative Flag cleared Example: add cln r2,r3 ; Add r3 to r2 ; Clear Negative Flag Words: 1 (2 bytes) Cycles: 1 53 0856E-AVR-11/05 CLR - Clear Register Description: Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the register. Operation: Rd Rd Rd (i) (i) Syntax: Operands: Program Counter: CLR Rd 0 d 31 PC PC + 1 16-bit Opcode: (see EOR Rd,Rd) 0010 01dd dddd dddd Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 0 0 1 - S: 0 Cleared V: 0 Cleared N: 0 Cleared Z: 1 Set R (Result) equals Rd after the operation. Example: loop: clr r18 ; clear r18 inc r18 ; increase r18 r18,$50 ; Compare r18 to $50 ... cpi brne loop Words: 1 (2 bytes) Cycles: 1 54 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CLS - Clear Signed Flag Description: Clears the Signed Flag (S) in SREG (Status Register). Operation: S0 (i) (i) Syntax: Operands: Program Counter: CLS None PC PC + 1 16-bit Opcode: 1001 0100 1100 1000 Status Register (SREG) and Boolean Formula: S: I T H S V N Z C - - - 0 - - - - 0 Signed Flag cleared Example: add cls r2,r3 ; Add r3 to r2 ; Clear Signed Flag Words: 1 (2 bytes) Cycles: 1 55 0856E-AVR-11/05 CLT - Clear T Flag Description: Clears the T Flag in SREG (Status Register). Operation: T0 (i) (i) Syntax: Operands: Program Counter: CLT None PC PC + 1 16-bit Opcode: 1001 0100 1110 1000 Status Register (SREG) and Boolean Formula: T: I T H S V N Z C - 0 - - - - - - 0 T Flag cleared Example: clt ; Clear T Flag Words: 1 (2 bytes) Cycles: 1 56 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CLV - Clear Overflow Flag Description: Clears the Overflow Flag (V) in SREG (Status Register). Operation: V0 (i) (i) Syntax: Operands: Program Counter: CLV None PC PC + 1 16-bit Opcode: 1001 0100 1011 1000 Status Register (SREG) and Boolean Formula: V: I T H S V N Z C - - - - 0 - - - 0 Overflow Flag cleared Example: add clv r2,r3 ; Add r3 to r2 ; Clear Overflow Flag Words: 1 (2 bytes) Cycles: 1 57 0856E-AVR-11/05 CLZ - Clear Zero Flag Description: Clears the Zero Flag (Z) in SREG (Status Register). Operation: Z0 (i) (i) Syntax: Operands: Program Counter: CLZ None PC PC + 1 16-bit Opcode: 1001 0100 1001 1000 Status Register (SREG) and Boolean Formula: Z: I T H S V N Z C - - - - - - 0 - 0 Zero Flag cleared Example: add clz r2,r3 ; Add r3 to r2 ; Clear zero Words: 1 (2 bytes) Cycles: 1 58 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set COM - One's Complement Description: This instruction performs a One's Complement of register Rd. Operation: Rd $FF - Rd (i) (i) Syntax: Operands: Program Counter: COM Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 1 S: NV For signed tests. V: 0 Cleared. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6* R5* R4 *R3 *R2* R1 *R0 Set if the result is $00; Cleared otherwise. C: 1 Set. R (Result) equals Rd after the operation. Example: com r4 ; Take one's complement of r4 breq zero ; Branch if zero ... zero: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 59 0856E-AVR-11/05 CP - Compare Description: This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional branches can be used after this instruction. Operation: (i) Rd - Rr (i) Syntax: Operands: Program Counter: CP Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0001 01rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: Rd3 *Rr3+ Rr3 *R3 +R3* Rd3 Set if there was a borrow from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7* Rr7 *R7+ Rd7 *Rr7 *R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4 *R3 *R2 *R1 *R0 Set if the result is $00; cleared otherwise. C: Rd7 *Rr7+ Rr7* R7 +R7* Rd7 Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise. R (Result) after the operation. Example: cp r4,r19 brne noteq ; Compare r4 with r19 ; Branch if r4 <> r19 ... noteq: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 60 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CPC - Compare with Carry Description: This instruction performs a compare between two registers Rd and Rr and also takes into account the previous carry. None of the registers are changed. All conditional branches can be used after this instruction. Operation: (i) Rd - Rr - C (i) Syntax: Operands: Program Counter: CPC Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0000 01rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: Rd3 *Rr3+ Rr3 *R3 +R3 *Rd3 Set if there was a borrow from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7 *Rr7* R7+ Rd7* Rr7 *R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6* R5* R4 *R3 *R2 *R1* R0 *Z Previous value remains unchanged when the result is zero; cleared otherwise. C: Rd7 *Rr7+ Rr7* R7 +R7 *Rd7 Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of Rd; cleared otherwise. R (Result) after the operation. Example: ; Compare r3:r2 with r1:r0 cp r2,r0 ; Compare low byte cpc r3,r1 ; Compare high byte brne noteq ; Branch if not equal ... noteq: nop ; Branch destination (do nothing) 61 0856E-AVR-11/05 Words: 1 (2 bytes) Cycles: 1 62 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set CPI - Compare with Immediate Description: This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional branches can be used after this instruction. Operation: (i) Rd - K (i) Syntax: Operands: Program Counter: CPI Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 0011 KKKK dddd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: Rd3 *K3+ K3* R3+ R3 *Rd3 Set if there was a borrow from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7 *K7 *R7 +Rd7 *K7 *R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6* R5 *R4* R3* R2 *R1 *R0 Set if the result is $00; cleared otherwise. C: Rd7 *K7 +K7 *R7+ R7 *Rd7 Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise. R (Result) after the operation. Example: cpi r19,3 ; Compare r19 with 3 brne error ; Branch if r19<>3 ... error: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 63 0856E-AVR-11/05 CPSE - Compare Skip if Equal Description: This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd = Rr. Operation: If Rd = Rr then PC PC + 2 (or 3) else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: CPSE Rd,Rr 0 d 31, 0 r 31 PC PC + 1, Condition false - no skip PC PC + 2, Skip a one word instruction PC PC + 3, Skip a two word instruction 16-bit Opcode: 0001 00rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: inc r4 ; Increase r4 cpse r4,r0 ; Compare r4 to r0 neg r4 ; Only executed if r4<>r0 nop ; Continue (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false (no skip) 2 if condition is true (skip is executed) and the instruction skipped is 1 word 3 if condition is true (skip is executed) and the instruction skipped is 2 words 64 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set DEC - Decrement Description: Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd. The C Flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in multiple-precision computations. When operating on unsigned values, only BREQ and BRNE branches can be expected to perform consistently. When operating on two's complement values, all signed branches are available. Operation: Rd Rd - 1 (i) (i) Syntax: Operands: Program Counter: DEC Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 1010 Status Register and Boolean Formula: I T H S V N Z C - - - - S: NV For signed tests. V: R7 *R6 *R5 *R4* R3* R2 *R1* R0 Set if two's complement overflow resulted from the operation; cleared otherwise. Two's complement overflow occurs if and only if Rd was $80 before the operation. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6* R5 *R4* R3* R2* R1* R0 Set if the result is $00; Cleared otherwise. R (Result) equals Rd after the operation. Example: loop: ldi r17,$10 ; Load constant in r17 add r1,r2 ; Add r2 to r1 dec r17 ; Decrement r17 brne loop ; Branch if r17<>0 nop ; Continue (do nothing) Words: 1 (2 bytes) Cycles: 1 65 0856E-AVR-11/05 EICALL - Extended Indirect Call to Subroutine Description: Indirect call of a subroutine pointed to by the Z (16 bits) Pointer Register in the Register File and the EIND Register in the I/O space. This instruction allows for indirect calls to the entire 4M (words) Program memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme during EICALL. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) PC(15:0) Z(15:0) PC(21:16) EIND Syntax: Operands: Program Counter: Stack: (i) EICALL None See Operation STACK PC + 1 SP SP - 3 (3 bytes, 22 bits) 16-bit Opcode: 1001 0101 0001 1001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: ldi r16,$05 out EIND,r16 ldi r30,$00 ldi r31,$10 eicall ; Set up EIND and Z-pointer ; Call to $051000 Words: 1 (2 bytes) Cycles: 4 (only implemented in devices with 22 bit PC) 66 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set EIJMP - Extended Indirect Jump Description: Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the Register File and the EIND Register in the I/O space. This instruction allows for indirect jumps to the entire 4M (words) Program memory space. See also IJMP. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) PC(15:0) Z(15:0) PC(21:16) EIND (i) EIJMP Syntax: Operands: None Program Counter: Stack: See Operation Not Affected 16-bit Opcode: 1001 0100 0001 1001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: ldi r16,$05 out EIND,r16 ldi r30,$00 ldi r31,$10 eijmp ; Set up EIND and Z-pointer ; Jump to $051000 Words: 1 (2 bytes) Cycles: 2 67 0856E-AVR-11/05 ELPM - Extended Load Program Memory Description: Loads one byte pointed to by the Z-register and the RAMPZ Register in the I/O space, and places this byte in the destination register Rd. This instruction features a 100% space effective constant initialization or constant data fetch. The Program memory is organized in 16-bit words while the Z-pointer is a byte address. Thus, the least significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This instruction can address the entire Program memory space. The Z-pointer Register can either be left unchanged by the operation, or it can be incremented. The incrementation applies to the entire 24-bit concatenation of the RAMPZ and Z-pointer Registers. Devices with Self-Programming capability can use the ELPM instruction to read the Fuse and Lock bit value. Refer to the device documentation for a detailed description. This instruction is not available in all devices. Refer to the device specific instruction set summary. The result of these combinations is undefined: ELPM r30, Z+ ELPM r31, Z+ (i) (ii) (iii) (i) (ii) (iii) Operation: Comment: R0 (RAMPZ:Z) Rd (RAMPZ:Z) Rd (RAMPZ:Z) (RAMPZ:Z) (RAMPZ:Z) + 1 RAMPZ:Z: Unchanged, R0 implied destination register RAMPZ:Z: Unchanged RAMPZ:Z: Post incremented Syntax: Operands: Program Counter: ELPM ELPM Rd, Z ELPM Rd, Z+ None, R0 implied 0 d 31 0 d 31 PC PC + 1 PC PC + 1 PC PC + 1 16 bit Opcode: (i) 1001 0101 1101 1000 (ii) 1001 000d dddd 0110 (iii) 1001 000d dddd 0111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: ldi ZL, byte3(Table_1<<1); Initialize Z-pointer out RAMPZ, ZL ldi ZH, byte2(Table_1<<1) ldi ZL, byte1(Table_1<<1) elpm r16, Z+ ; Load constant from Program ; memory pointed to by RAMPZ:Z (Z is r31:r30) ... Table_1: .dw 0x3738 ; 0x38 is addressed when ZLSB = 0 ; 0x37 is addressed when ZLSB = 1 68 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set ... Words: 1 (2 bytes) Cycles: 3 69 0856E-AVR-11/05 EOR - Exclusive OR Description: Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination register Rd. Operation: Rd Rd Rr (i) (i) Syntax: Operands: Program Counter: EOR Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0010 01rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6 *R5 *R4* R3* R2 *R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: eor r4,r4 ; Clear r4 eor r0,r22 ; Bitwise exclusive or between r0 and r22 Words: 1 (2 bytes) Cycles: 1 70 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set FMUL - Fractional Multiply Unsigned Description: This instruction performs 8-bit x 8-bit 16-bit unsigned multiplication and shifts the result one bit left. Rd Rr x Multiplicand Multiplier 8 AE R1 R0 Product High Product Low 8 16 Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to be in the same format as the inputs. The FMUL instruction incorporates the shift operation in the same number of cycles as MUL. The (1.7) format is most commonly used with signed numbers, while FMUL performs an unsigned multiplication. This instruction is therefore most useful for calculating one of the partial products when performing a signed multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31) format. Note: the result of the FMUL operation may suffer from a 2's complement overflow if interpreted as a number in the (1.15) format. The MSB of the multiplication before shifting must be taken into account, and is found in the carry bit. See the following example. The multiplicand Rd and the multiplier Rr are two registers containing unsigned fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit unsigned fractional product with the implicit radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte). This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) R1:R0 Rd x Rr (unsigned (1.15) unsigned (1.7) x unsigned (1.7)) Syntax: Operands: Program Counter: (i) FMUL Rd,Rr 16 d 23, 16 r 23 PC PC + 1 16-bit Opcode: 0000 0011 0ddd 1rrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - C: R16 Set if bit 15 of the result before left shift is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. R (Result) equals R1,R0 after the operation. 71 0856E-AVR-11/05 Example: ;****************************************************************************** ;* DESCRIPTION ;*Signed fractional multiply of two 16-bit numbers with 32-bit result. ;* USAGE ;*r19:r18:r17:r16 = ( r23:r22 * r21:r20 ) << 1 ;****************************************************************************** fmuls16x16_32: clrr2 fmulsr23, r21;((signed)ah * (signed)bh) << 1 movwr19:r18, r1:r0 fmulr22, r20;(al * bl) << 1 adcr18, r2 movwr17:r16, r1:r0 fmulsur23, r20;((signed)ah * bl) << 1 sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 fmulsur21, r22;((signed)bh * al) << 1 sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 Words: 1 (2 bytes) Cycles: 2 72 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set FMULS - Fractional Multiply Signed Description: This instruction performs 8-bit x 8-bit 16-bit signed multiplication and shifts the result one bit left. Rd Rr x Multiplicand Multiplier 8 R1 R0 Product High Product Low 8 16 Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to be in the same format as the inputs. The FMULS instruction incorporates the shift operation in the same number of cycles as MULS. The multiplicand Rd and the multiplier Rr are two registers containing signed fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte). Note that when multiplying 0x80 (-1) with 0x80 (-1), the result of the shift operation is 0x8000 (-1). The shift operation thus gives a two's complement overflow. This must be checked and handled by software. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) R1:R0 Rd x Rr (signed (1.15) signed (1.7) x signed (1.7)) Syntax: Operands: Program Counter: (i) FMULS Rd,Rr 16 d 23, 16 r 23 PC PC + 1 16-bit Opcode: 0000 0011 1ddd 0rrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - C: R16 Set if bit 15 of the result before left shift is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. R (Result) equals R1,R0 after the operation. Example: fmuls r23,r22 ; Multiply signed r23 and r22 in (1.7) format, result in (1.15) format movw r23:r22,r1:r0 ; Copy result back in r23:r22 73 0856E-AVR-11/05 Words: 1 (2 bytes) Cycles: 2 74 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set FMULSU - Fractional Multiply Signed with Unsigned Description: This instruction performs 8-bit x 8-bit 16-bit signed multiplication and shifts the result one bit left. Rd Rr x Multiplicand Multiplier 8 R1 R0 Product High Product Low 8 16 Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For signal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left shift is required for the high byte of the product to be in the same format as the inputs. The FMULSU instruction incorporates the shift operation in the same number of cycles as MULSU. The (1.7) format is most commonly used with signed numbers, while FMULSU performs a multiplication with one unsigned and one signed input. This instruction is therefore most useful for calculating two of the partial products when performing a signed multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31) format. Note: the result of the FMULSU operation may suffer from a 2's complement overflow if interpreted as a number in the (1.15) format. The MSB of the multiplication before shifting must be taken into account, and is found in the carry bit. See the following example. The multiplicand Rd and the multiplier Rr are two registers containing fractional numbers where the implicit radix point lies between bit 6 and bit 7. The multiplicand Rd is a signed fractional number, and the multiplier Rr is an unsigned fractional number. The 16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is placed in R1 (high byte) and R0 (low byte). This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) R1:R0 Rd x Rr (signed (1.15) signed (1.7) x unsigned (1.7)) Syntax: Operands: Program Counter: (i) FMULSU Rd,Rr 16 d 23, 16 r 23 PC PC + 1 16-bit Opcode: 0000 0011 1ddd 1rrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - C: R16 Set if bit 15 of the result before left shift is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. R (Result) equals R1,R0 after the operation. 75 0856E-AVR-11/05 Example: ;****************************************************************************** ;* DESCRIPTION ;*Signed fractional multiply of two 16-bit numbers with 32-bit result. ;* USAGE ;*r19:r18:r17:r16 = ( r23:r22 * r21:r20 ) << 1 ;****************************************************************************** fmuls16x16_32: clrr2 fmulsr23, r21;((signed)ah * (signed)bh) << 1 movwr19:r18, r1:r0 fmulr22, r20;(al * bl) << 1 adcr18, r2 movwr17:r16, r1:r0 fmulsur23, r20;((signed)ah * bl) << 1 sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 fmulsur21, r22;((signed)bh * al) << 1 sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 Words: 1 (2 bytes) Cycles: 2 76 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set ICALL - Indirect Call to Subroutine Description: Calls to a subroutine within the entire 4M (words) Program memory. The return address (to the instruction after the CALL) will be stored onto the Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during CALL. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: PC(15:0) Z(15:0) Devices with 16 bits PC, 128K bytes Program memory maximum. PC(15:0) Z(15:0) Devices with 22 bits PC, 8M bytes Program memory maximum. PC(21:16) 0 (i) (ii) Syntax: Operands: Program Counter: Stack: (i) ICALL None See Operation STACK PC + 1 SP SP - 2 (2 bytes, 16 bits) (ii) ICALL None See Operation STACK PC + 1 SP SP - 3 (3 bytes, 22 bits) 16-bit Opcode: 1001 0101 0000 1001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: mov icall r30,r0 ; Set offset to call table ; Call routine pointed to by r31:r30 Words: 1 (2 bytes) Cycles: 3 devices with 16 bit PC 4 devices with 22 bit PC 77 0856E-AVR-11/05 IJMP - Indirect Jump Description: Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the Register File. The Z-pointer Register is 16 bits wide and allows jump within the lowest 64K words (128K bytes) section of Program memory. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: PC Z(15:0) Devices with 16 bits PC, 128K bytes Program memory maximum. PC(15:0) Z(15:0) Devices with 22 bits PC, 8M bytes Program memory maximum. PC(21:16) 0 (i) (ii) Syntax: (i),(ii) Operands: IJMP None Program Counter: Stack: See Operation Not Affected 16-bit Opcode: 1001 0100 0000 1001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: mov ijmp r30,r0 ; Set offset to jump table ; Jump to routine pointed to by r31:r30 Words: 1 (2 bytes) Cycles: 2 78 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set IN - Load an I/O Location to Register Description: Loads data from the I/O Space (Ports, Timers, Configuration Registers etc.) into register Rd in the Register File. Operation: Rd I/O(A) (i) (i) Syntax: Operands: Program Counter: IN Rd,A 0 d 31, 0 A 63 PC PC + 1 16-bit Opcode: 1011 0AAd dddd AAAA Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: in r25,$16 ; Read Port B cpi r25,4 ; Compare read value to constant breq exit ; Branch if r25=4 ... exit: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 79 0856E-AVR-11/05 INC - Increment Description: Adds one -1- to the contents of register Rd and places the result in the destination register Rd. The C Flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in multiple-precision computations. When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When operating on two's complement values, all signed branches are available. Operation: Rd Rd + 1 (i) (i) Syntax: Operands: Program Counter: INC Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0011 Status Register and Boolean Formula: I T H S V N Z C - - - - S: NV For signed tests. V: R7 *R6 *R5 *R4 *R3* R2 *R1 *R0 Set if two's complement overflow resulted from the operation; cleared otherwise. Two's complement overflow occurs if and only if Rd was $7F before the operation. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7 *R6 *R5 *R4*R3 *R2* R1* R0 Set if the result is $00; Cleared otherwise. R (Result) equals Rd after the operation. Example: loop: clr r22 ; clear r22 inc r22 ; increment r22 cpi r22,$4F ; Compare r22 to $4f brne loop ; Branch if not equal ... nop 80 ; Continue (do nothing) AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set Words: 1 (2 bytes) Cycles: 1 81 0856E-AVR-11/05 JMP - Jump Description: Jump to an address within the entire 4M (words) Program memory. See also RJMP. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) PC k Syntax: Operands: Program Counter: Stack: (i) JMP k 0 k < 4M PC k Unchanged 32-bit Opcode: 1001 010k kkkk 110k kkkk kkkk kkkk kkkk Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: mov r1,r0 ; Copy r0 to r1 jmp farplc ; Unconditional jump ... farplc: nop ; Jump destination (do nothing) Words: 2 (4 bytes) Cycles: 3 82 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set LD - Load Indirect from Data Space to Register using Index X Description: Loads one byte indirect from the data space to a register. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space. The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is limited to the current data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPX in register in the I/O area has to be changed. The X-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the X-pointer Register. Note that only the low byte of the X-pointer is updated in devices with no more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPX Register in the I/O area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the increment/decrement is added to the entire 24-bit address on such devices. Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary. The result of these combinations is undefined: LD r26, X+ LD r27, X+ LD r26, -X LD r27, -X Using the X-pointer: (i) (ii) (iii) (i) (ii) (iii) Operation: Comment: Rd (X) Rd (X) XX-1 XX+1 Rd (X) X: Unchanged X: Post incremented X: Pre decremented Syntax: Operands: Program Counter: LD Rd, X LD Rd, X+ LD Rd, -X 0 d 31 0 d 31 0 d 31 PC PC + 1 PC PC + 1 PC PC + 1 16-bit Opcode: (i) 1001 000d dddd 1100 (ii) 1001 000d dddd 1101 (iii) 1001 000d dddd 1110 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r27 ; Clear X high byte ldi r26,$60 ; Set X low byte to $60 83 0856E-AVR-11/05 ld r0,X+ ld r1,X ; Load r0 with data space loc. $60(X post inc) ; Load r1 with data space loc. $61 ldi r26,$63 ; Set X low byte to $63 ld r2,X ; Load r2 with data space loc. $63 ld r3,-X ; Load r3 with data space loc. $62(X pre dec) Words: 1 (2 bytes) Cycles: 2 84 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set LD (LDD) - Load Indirect from Data Space to Register using Index Y Description: Loads one byte indirect with or without displacement from the data space to a register. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space. The data location is pointed to by the Y (16 bits) Pointer Register in the Register File. Memory access is limited to the current data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPY in register in the I/O area has to be changed. The Y-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented. These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that only the low byte of the Y-pointer is updated in devices with no more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPY Register in the I/O area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the increment/decrement/displacement is added to the entire 24-bit address on such devices. Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary. The result of these combinations is undefined: LD r28, Y+ LD r29, Y+ LD r28, -Y LD r29, -Y Using the Y-pointer: (i) (ii) (iii) (iiii) (i) (ii) (iii) (iiii) Operation: Comment: Rd (Y) Rd (Y) YY-1 Rd (Y+q) YY+1 Rd (Y) Y: Unchanged Y: Post incremented Y: Pre decremented Y: Unchanged, q: Displacement Syntax: Operands: Program Counter: LD Rd, Y LD Rd, Y+ LD Rd, -Y LDD Rd, Y+q 0 d 31 0 d 31 0 d 31 0 d 31, 0 q 63 PC PC + 1 PC PC + 1 PC PC + 1 PC PC + 1 85 0856E-AVR-11/05 16-bit Opcode: (i) 1000 000d dddd 1000 (ii) 1001 000d dddd 1001 (iii) 1001 000d dddd 1010 (iiii) 10q0 qq0d dddd 1qqq Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r29 ; Clear Y high byte ldi r28,$60 ; Set Y low byte to $60 ld r0,Y+ ; Load r0 with data space loc. $60(Y post inc) ld r1,Y ; Load r1 with data space loc. $61 ldi r28,$63 ; Set Y low byte to $63 ld r2,Y ; Load r2 with data space loc. $63 ld r3,-Y ; Load r3 with data space loc. $62(Y pre dec) ldd r4,Y+2 ; Load r4 with data space loc. $64 Words: 1 (2 bytes) Cycles: 2 86 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set LD (LDD) - Load Indirect From Data Space to Register using Index Z Description: Loads one byte indirect with or without displacement from the data space to a register. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space. The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is limited to the current data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPZ in register in the I/O area has to be changed. The Z-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented. These features are especially suited for Stack Pointer usage of the Z-pointer Register, however because the Z-pointer Register can be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X or Y-pointer as a dedicated Stack Pointer. Note that only the low byte of the Z-pointer is updated in devices with no more than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the increment/decrement/displacement is added to the entire 24-bit address on such devices. Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary. For using the Z-pointer for table lookup in Program memory see the LPM and ELPM instructions. The result of these combinations is undefined: LD r30, Z+ LD r31, Z+ LD r30, -Z LD r31, -Z Using the Z-pointer: (i) (ii) (iii) (iiii) (i) (ii) (iii) (iiii) Operation: Comment: Rd (Z) Rd (Z) Z Z -1 Rd (Z+q) ZZ+1 Rd (Z) Z: Unchanged Z: Post increment Z: Pre decrement Z: Unchanged, q: Displacement Syntax: Operands: Program Counter: LD Rd, Z LD Rd, Z+ LD Rd, -Z LDD Rd, Z+q 0 d 31 0 d 31 0 d 31 0 d 31, 0 q 63 PC PC + 1 PC PC + 1 PC PC + 1 PC PC + 1 87 0856E-AVR-11/05 16-bit Opcode: (i) 1000 000d dddd 0000 (ii) 1001 000d dddd 0001 (iii) 1001 000d dddd 0010 (iiii) 10q0 qq0d dddd 0qqq Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r31 ; Clear Z high byte ldi r30,$60 ; Set Z low byte to $60 ld r0,Z+ ; Load r0 with data space loc. $60(Z post inc) ld r1,Z ; Load r1 with data space loc. $61 ldi r30,$63 ; Set Z low byte to $63 ld r2,Z ; Load r2 with data space loc. $63 ld r3,-Z ; Load r3 with data space loc. $62(Z pre dec) ldd r4,Z+2 ; Load r4 with data space loc. $64 Words: 1 (2 bytes) Cycles: 2 88 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set LDI - Load Immediate Description: Loads an 8 bit constant directly to register 16 to 31. Operation: Rd K (i) (i) Syntax: Operands: Program Counter: LDI Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 1110 KKKK dddd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r31 ldi r30,$F0 lpm ; Clear Z high byte ; Set Z low byte to $F0 ; Load constant from Program ; memory pointed to by Z Words: 1 (2 bytes) Cycles: 1 89 0856E-AVR-11/05 LDS - Load Direct from Data Space Description: Loads one byte from the data space to a register. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the register file only. The EEPROM has a separate address space. A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes. The LDS instruction uses the RAMPD Register to access memory above 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPD in register in the I/O area has to be changed. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: Rd (k) (i) (i) Syntax: Operands: Program Counter: LDS Rd,k 0 d 31, 0 k 65535 PC PC + 2 32-bit Opcode: 1001 000d dddd 0000 kkkk kkkk kkkk kkkk Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: lds r2,$FF00 ; Load r2 with the contents of data space location $FF00 add r2,r1 ; add r1 to r2 sts $FF00,r2 ; Write back Words: 2 (4 bytes) Cycles: 2 90 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set LPM - Load Program Memory Description: Loads one byte pointed to by the Z-register into the destination register Rd. This instruction features a 100% space effective constant initialization or constant data fetch. The Program memory is organized in 16-bit words while the Z-pointer is a byte address. Thus, the least significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This instruction can address the first 64K bytes (32K words) of Program memory. The Z-pointer Register can either be left unchanged by the operation, or it can be incremented. The incrementation does not apply to the RAMPZ Register. Devices with Self-Programming capability can use the LPM instruction to read the Fuse and Lock bit values. Refer to the device documentation for a detailed description. Not all variants of the LPM instruction are available in all devices. Refer to the device specific instruction set summary. The LPM instruction is not implemented at all in the AT90S1200 device. The result of these combinations is undefined: LPM r30, Z+ LPM r31, Z+ (i) (ii) (iii) (i) (ii) (iii) Operation: Comment: R0 (Z) Rd (Z) Rd (Z) ZZ+1 Z: Unchanged, R0 implied destination register Z: Unchanged Z: Post incremented Syntax: Operands: Program Counter: LPM LPM Rd, Z LPM Rd, Z+ None, R0 implied 0 d 31 0 d 31 PC PC + 1 PC PC + 1 PC PC + 1 16-bit Opcode: (i) 1001 0101 1100 1000 (ii) 1001 000d dddd 0100 (iii) 1001 000d dddd 0101 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: ldi ZH, high(Table_1<<1); Initialize Z-pointer ldi ZL, low(Table_1<<1) lpm r16, Z ; Load constant from Program ; Memory pointed to by Z (r31:r30) ... Table_1: .dw 0x5876 ; 0x76 is addresses when ZLSB = 0 ; 0x58 is addresses when ZLSB = 1 ... 91 0856E-AVR-11/05 Words: 1 (2 bytes) Cycles: 3 92 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set LSL - Logical Shift Left Description: Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C Flag of the SREG. This operation effectively multiplies signed and unsigned values by two. Operation: (i) C (i) b7 - - - - - - - - - - - - - - - - - - b0 0 Syntax: Operands: Program Counter: LSL Rd 0 d 31 PC PC + 1 16-bit Opcode: (see ADD Rd,Rd) 0000 11dd dddd dddd Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: Rd3 S: N V, For signed tests. V: N C (For N and C after the shift) N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. C: Rd7 Set if, before the shift, the MSB of Rd was set; cleared otherwise. R (Result) equals Rd after the operation. Example: add r0,r4 ; Add r4 to r0 lsl r0 ; Multiply r0 by 2 Words: 1 (2 bytes) Cycles: 1 93 0856E-AVR-11/05 LSR - Logical Shift Right Description: Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C Flag of the SREG. This operation effectively divides an unsigned value by two. The C Flag can be used to round the result. Operation: 0 (i) b7 - - - - - - - - - - - - - - - - - - b0 C Syntax: Operands: Program Counter: LSR Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0110 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 S: N V, For signed tests. V: N C (For N and C after the shift) N: 0 Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. C: Rd0 Set if, before the shift, the LSB of Rd was set; cleared otherwise. R (Result) equals Rd after the operation. Example: add r0,r4 ; Add r4 to r0 lsr r0 ; Divide r0 by 2 Words: 1 (2 bytes) Cycles: 1 94 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set MOV - Copy Register Description: This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination register Rd is loaded with a copy of Rr. Operation: Rd Rr (i) (i) Syntax: Operands: Program Counter: MOV Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0010 11rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: mov r16,r0 ; Copy r0 to r16 call check ; Call subroutine r16,$11 ; Compare r16 to $11 ... check: cpi ... ret ; Return from subroutine Words: 1 (2 bytes) Cycles: 1 95 0856E-AVR-11/05 MOVW - Copy Register Word Description: This instruction makes a copy of one register pair into another register pair. The source register pair Rr+1:Rr is left unchanged, while the destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: Rd+1:Rd Rr+1:Rr (i) Syntax: Operands: Program Counter: MOVW Rd+1:Rd,Rr+1Rrd {0,2,...,30}, r {0,2,...,30} (i) PC PC + 1 16-bit Opcode: 0000 0001 dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: movw r17:16,r1:r0 ; Copy r1:r0 to r17:r16 call check ; Call subroutine r16,$11 ; Compare r16 to $11 r17,$32 ; Compare r17 to $32 ... check: cpi ... cpi ... ret ; Return from subroutine Words: 1 (2 bytes) Cycles: 1 96 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set MUL - Multiply Unsigned Description: This instruction performs 8-bit x 8-bit 16-bit unsigned multiplication. Rd Rr x Multiplicand Multiplier 8 R1 R0 Product High Product Low 8 16 The multiplicand Rd and the multiplier Rr are two registers containing unsigned numbers. The 16-bit unsigned product is placed in R1 (high byte) and R0 (low byte). Note that if the multiplicand or the multiplier is selected from R0 or R1 the result will overwrite those after multiplication. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) (i) R1:R0 Rd x Rr (unsigned unsigned x unsigned) Syntax: Operands: Program Counter: MUL Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 1001 11rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - C: R15 Set if bit 15 of the result is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. R (Result) equals R1,R0 after the operation. Example: mul r5,r4 movw r4,r0 ; Multiply unsigned r5 and r4 ; Copy result back in r5:r4 Words: 1 (2 bytes) Cycles: 2 97 0856E-AVR-11/05 MULS - Multiply Signed Description: This instruction performs 8-bit x 8-bit 16-bit signed multiplication. Rd Rr x Multiplicand Multiplier 8 R1 R0 Product High Product Low 8 16 The multiplicand Rd and the multiplier Rr are two registers containing signed numbers. The 16-bit signed product is placed in R1 (high byte) and R0 (low byte). This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) (i) R1:R0 Rd x Rr (signed signed x signed) Syntax: Operands: Program Counter: MULS Rd,Rr 16 d 31, 16 r 31 PC PC + 1 16-bit Opcode: 0000 0010 dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - C: R15 Set if bit 15 of the result is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. R (Result) equals R1,R0 after the operation. Example: muls r21,r20 ; Multiply signed r21 and r20 movw r20,r0 ; Copy result back in r21:r20 Words: 1 (2 bytes) Cycles: 2 98 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set MULSU - Multiply Signed with Unsigned Description: This instruction performs 8-bit x 8-bit 16-bit multiplication of a signed and an unsigned number. Rd Rr x Multiplicand Multiplier 8 R1 R0 Product High Product Low 8 16 The multiplicand Rd and the multiplier Rr are two registers. The multiplicand Rd is a signed number, and the multiplier Rr is unsigned. The 16-bit signed product is placed in R1 (high byte) and R0 (low byte). This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: (i) (i) R1:R0 Rd x Rr (signed signed x unsigned) Syntax: Operands: Program Counter: MULSU Rd,Rr 16 d 23, 16 r 23 PC PC + 1 16-bit Opcode: 0000 0011 0ddd 0rrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - C: R15 Set if bit 15 of the result is set; cleared otherwise. Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7* R6* R5* R4* R3* R2 *R1* R0 Set if the result is $0000; cleared otherwise. R (Result) equals R1,R0 after the operation. Example: ;****************************************************************************** ;* DESCRIPTION ;*Signed multiply of two 16-bit numbers with 32-bit result. ;* USAGE ;*r19:r18:r17:r16 = r23:r22 * r21:r20 ;****************************************************************************** muls16x16_32: clrr2 mulsr23, r21; (signed)ah * (signed)bh 99 0856E-AVR-11/05 movwr19:r18, r1:r0 mulr22, r20; al * bl movwr17:r16, r1:r0 mulsur23, r20; (signed)ah * bl sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 mulsur21, r22; (signed)bh * al sbcr19, r2 addr17, r0 adcr18, r1 adcr19, r2 ret Words: 1 (2 bytes) Cycles: 2 100 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set NEG - Two's Complement Description: Replaces the contents of register Rd with its two's complement; the value $80 is left unchanged. Operation: Rd $00 - Rd (i) (i) Syntax: Operands: Program Counter: NEG Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0001 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: R3 + Rd3 Set if there was a borrow from bit 3; cleared otherwise S: NV For signed tests. V: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if there is a two's complement overflow from the implied subtraction from zero; cleared otherwise. A two's complement overflow will occur if and only if the contents of the Register after operation (Result) is $80. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; Cleared otherwise. C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0 Set if there is a borrow in the implied subtraction from zero; cleared otherwise. The C Flag will be set in all cases except when the contents of Register after operation is $00. R (Result) equals Rd after the operation. Example: sub positive: r11,r0 ; Subtract r0 from r11 brpl positive ; Branch if result positive neg ; Take two's complement of r11 nop r11 ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 101 0856E-AVR-11/05 NOP - No Operation Description: This instruction performs a single cycle No Operation. Operation: (i) No (i) Syntax: Operands: Program Counter: NOP None PC PC + 1 16-bit Opcode: 0000 0000 0000 0000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r16 ; Clear r16 ser r17 ; Set r17 out $18,r16 ; Write zeros to Port B nop out ; Wait (do nothing) $18,r17 ; Write ones to Port B Words: 1 (2 bytes) Cycles: 1 102 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set OR - Logical OR Description: Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register Rd. Operation: Rd Rd v Rr (i) (i) Syntax: Operands: Program Counter: OR Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0010 10rd dddd rrrr Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: or r15,r16 ; Do bitwise or between registers bst r15,6 ; Store bit 6 of r15 in T Flag brts ok ; Branch if T Flag set ... ok: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 103 0856E-AVR-11/05 ORI - Logical OR with Immediate Description: Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register Rd. Operation: Rd Rd v K (i) (i) Syntax: Operands: Program Counter: ORI Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 0110 KKKK dddd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: ori r16,$F0 ; Set high nibble of r16 ori r17,1 ; Set bit 0 of r17 Words: 1 (2 bytes) Cycles: 1 104 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set OUT - Store Register to I/O Location Description: Stores data from register Rr in the Register File to I/O Space (Ports, Timers, Configuration Registers etc.). Operation: I/O(A) Rr (i) (i) Syntax: Operands: Program Counter: OUT A,Rr 0 r 31, 0 A 63 PC PC + 1 16-bit Opcode: 1011 1AAr rrrr AAAA Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r16 ser r17 ; Set r17 out $18,r16 ; Write zeros to Port B nop out ; Clear r16 ; Wait (do nothing) $18,r17 ; Write ones to Port B Words: 1 (2 bytes) Cycles: 1 105 0856E-AVR-11/05 POP - Pop Register from Stack Description: This instruction loads register Rd with a byte from the STACK. The Stack Pointer is pre-incremented by 1 before the POP. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: Rd STACK (i) (i) Syntax: Operands: Program Counter: Stack: POP Rd 0 d 31 PC PC + 1 SP SP + 1 16-bit Opcode: 1001 000d dddd 1111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: call routine ; Call subroutine ... routine: push r14 ; Save r14 on the Stack push r13 ; Save r13 on the Stack pop r13 ; Restore r13 pop r14 ; Restore r14 ... ret ; Return from subroutine Words: 1 (2 bytes) Cycles: 2 106 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set PUSH - Push Register on Stack Description: This instruction stores the contents of register Rr on the STACK. The Stack Pointer is post-decremented by 1 after the PUSH. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: STACK Rr (i) Syntax: (i) PUSH Rr Operands: Program Counter: Stack: 0 r 31 PC PC + 1 SP SP - 1 16-bit Opcode: 1001 001d dddd 1111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: call routine ; Call subroutine ... routine: push r14 ; Save r14 on the Stack push r13 ; Save r13 on the Stack pop r13 ; Restore r13 pop r14 ... ret ; Restore r14 ; Return from subroutine Words: 1 (2 bytes) Cycles: 2 107 0856E-AVR-11/05 RCALL - Relative Call to Subroutine Description: Relative call to an address within PC - 2K + 1 and PC + 2K (words). The return address (the instruction after the RCALL) is stored onto the Stack. See also CALL. For AVR microcontrollers with Program memory not exceeding 4K words (8K bytes) this instruction can address the entire memory from every address location. The Stack Pointer uses a post-decrement scheme during RCALL. Operation: PC PC + k + 1 PC PC + k + 1 Devices with 16 bits PC, 128K bytes Program memory maximum. Devices with 22 bits PC, 8M bytes Program memory maximum. Syntax: Operands: Program Counter: Stack: (i) RCALL k -2K k < 2K PC PC + k + 1 STACK PC + 1 SP SP - 2 (2 bytes, 16 bits) (ii) RCALL k -2K k < 2K PC PC + k + 1 STACK PC + 1 SP SP - 3 (3 bytes, 22 bits) (i) (ii) 16-bit Opcode: 1101 kkkk kkkk kkkk Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: rcall routine ; Call subroutine r14 ; Save r14 on the Stack r14 ; Restore r14 ... routine: push ... pop ret ; Return from subroutine Words: 1 (2 bytes) Cycles: 3 devices with 16-bit PC 4 devices with 22-bit PC 108 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set RET - Return from Subroutine Description: Returns from subroutine. The return address is loaded from the STACK. The Stack Pointer uses a pre-increment scheme during RET. Operation: PC(15:0) STACK Devices with 16 bits PC, 128K bytes Program memory maximum. PC(21:0) STACKDevices with 22 bits PC, 8M bytes Program memory maximum. (i) (ii) Syntax: Operands: Program Counter: Stack: (i) RET None See Operation SPSP + 2, (2bytes,16 bits) (ii) RET None See Operation SPSP + 3, (3bytes,22 bits) 16-bit Opcode: 1001 0101 0000 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - call routine ; Call subroutine r14 ; Save r14 on the Stack r14 ; Restore r14 Example: ... routine: push ... pop ret ; Return from subroutine Words: 1 (2 bytes) Cycles: 4 devices with 16-bit PC 5 devices with 22-bit PC 109 0856E-AVR-11/05 RETI - Return from Interrupt Description: Returns from interrupt. The return address is loaded from the STACK and the Global Interrupt Flag is set. Note that the Status Register is not automatically stored when entering an interrupt routine, and it is not restored when returning from an interrupt routine. This must be handled by the application program. The Stack Pointer uses a pre-increment scheme during RETI. Operation: (i) (ii) PC(15:0) STACK Devices with 16 bits PC, 128K bytes Program memory maximum. PC(21:0) STACKDevices with 22 bits PC, 8M bytes Program memory maximum. Syntax: Operands: Program Counter: Stack (i) RETI None See Operation SP SP + 2 (2 bytes, 16 bits) (ii) RETI None See Operation SP SP + 3 (3 bytes, 22 bits) 16-bit Opcode: 1001 0101 0001 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C 1 - - - - - - - I: 1 The I Flag is set. Example: ... extint: push r0 ; Save r0 on the Stack ... pop r0 reti ; Restore r0 ; Return and enable interrupts Words: 1 (2 bytes) Cycles: 4 devices with 16-bit PC 5 devices with 22-bit PC 110 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set RJMP - Relative Jump Description: Relative jump to an address within PC - 2K +1 and PC + 2K (words). For AVR microcontrollers with Program memory not exceeding 4K words (8K bytes) this instruction can address the entire memory from every address location. See also JMP. Operation: PC PC + k + 1 (i) (i) Syntax: Operands: Program Counter: Stack RJMP k -2K k < 2K PC PC + k + 1 Unchanged 16-bit Opcode: 1100 kkkk kkkk kkkk Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: error: ok: cpi r16,$42 ; Compare r16 to $42 brne error ; Branch if r16 <> $42 rjmp ok ; Unconditional branch add r16,r17 ; Add r17 to r16 inc r16 ; Increment r16 nop ; Destination for rjmp (do nothing) Words: 1 (2 bytes) Cycles: 2 111 0856E-AVR-11/05 ROL - Rotate Left trough Carry Description: Shifts all bits in Rd one place to the left. The C Flag is shifted into bit 0 of Rd. Bit 7 is shifted into the C Flag. This operation, combined with LSL, effectively multiplies multi-byte signed and unsigned values by two. Operation: C (i) b7 - - - - - - - - - - - - - - - - - - b0 C Syntax: Operands: Program Counter: ROL Rd 0 d 31 PC PC + 1 16-bit Opcode: (see ADC Rd,Rd) 0001 11dd dddd dddd Status Register (SREG) and Boolean Formula: I T H S V N Z C - - H: Rd3 S: N V, For signed tests. V: N C (For N and C after the shift) N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. C: Rd7 Set if, before the shift, the MSB of Rd was set; cleared otherwise. R (Result) equals Rd after the operation. Example: lsl r18 ; Multiply r19:r18 by two rol r19 ; r19:r18 is a signed or unsigned two-byte integer brcs oneenc ; Branch if carry set ... oneenc: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 112 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set ROR - Rotate Right through Carry Description: Shifts all bits in Rd one place to the right. The C Flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined with ASR, effectively divides multi-byte signed values by two. Combined with LSR it effectively divides multibyte unsigned values by two. The Carry Flag can be used to round the result. Operation: C (i) b7 - - - - - - - - - - - - - - - - - - b0 C Syntax: Operands: Program Counter: ROR Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - S: N V, For signed tests. V: N C (For N and C after the shift) N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. C: Rd0 Set if, before the shift, the LSB of Rd was set; cleared otherwise. R (Result) equals Rd after the operation. Example: lsr r19 ; Divide r19:r18 by two ror r18 ; r19:r18 is an unsigned two-byte integer brcc zeroenc1 ; Branch if carry cleared asr r17 ; Divide r17:r16 by two ror r16 ; r17:r16 is a signed two-byte integer brcc zeroenc2 ; Branch if carry cleared ... zeroenc1: nop ; Branch destination (do nothing) ... 113 0856E-AVR-11/05 zeroenc1: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 114 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SBC - Subtract with Carry Description: Subtracts two registers and subtracts with the C Flag and places the result in the destination register Rd. Operation: Rd Rd - Rr - C (i) (i) Syntax: Operands: Program Counter: SBC Rd,Rr 0 d 31, 0 r 31 PC PC + 1 16-bit Opcode: 0000 10rd dddd rrrr Status Register and Boolean Formula: I T H S V N Z C - - H: Rd3* Rr3 + Rr3* R3 + R3 *Rd3 Set if there was a borrow from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7 *Rr7* R7 +Rd7 *Rr7 *R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0* Z Previous value remains unchanged when the result is zero; cleared otherwise. C: Rd7 *Rr7+ Rr7 *R7 +R7 *Rd7 Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of the Rd; cleared otherwise. R (Result) equals Rd after the operation. Example: ; Subtract r1:r0 from r3:r2 sub r2,r0 ; Subtract low byte sbc r3,r1 ; Subtract with carry high byte Words: 1 (2 bytes) Cycles: 1 115 0856E-AVR-11/05 SBCI - Subtract Immediate with Carry Description: Subtracts a constant from a register and subtracts with the C Flag and places the result in the destination register Rd. Operation: Rd Rd - K - C (i) (i) Syntax: Operands: Program Counter: SBCI Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 0100 KKKK dddd KKKK Status Register and Boolean Formula: I T H S V N Z C - - H: Rd3* K3 + K3* R3 + R3 *Rd3 Set if there was a borrow from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7 *K7* R7 +Rd7 *K7 *R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0* Z Previous value remains unchanged when the result is zero; cleared otherwise. C: Rd7 *K7+ K7 * R7 +R7 *Rd7 Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd; cleared otherwise. R (Result) equals Rd after the operation. Example: ; Subtract $4F23 from r17:r16 subi r16,$23 ; Subtract low byte sbci r17,$4F ; Subtract with carry high byte Words: 1 (2 bytes) Cycles: 1 116 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SBI - Set Bit in I/O Register Description: Sets a specified bit in an I/O Register. This instruction operates on the lower 32 I/O Registers - addresses 0-31. Operation: I/O(A,b) 1 (i) (i) Syntax: Operands: Program Counter: SBI A,b 0 A 31, 0 b 7 PC PC + 1 16-bit Opcode: 1001 1010 AAAA Abbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: out $1E,r0 ; Write EEPROM address sbi $1C,0 ; Set read bit in EECR in r1,$1D ; Read EEPROM data Words: 1 (2 bytes) Cycles: 2 117 0856E-AVR-11/05 SBIC - Skip if Bit in I/O Register is Cleared Description: This instruction tests a single bit in an I/O Register and skips the next instruction if the bit is cleared. This instruction operates on the lower 32 I/O Registers - addresses 0-31. Operation: If I/O(A,b) = 0 then PC PC + 2 (or 3) else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: SBIC A,b 0 A 31, 0 b 7 PC PC + 1, Condition false - no skip PC PC + 2, Skip a one word instruction PC PC + 3, Skip a two word instruction 16-bit Opcode: 1001 1001 AAAA Abbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: e2wait: sbic $1C,1 ; Skip next inst. if EEWE cleared rjmp e2wait ; EEPROM write not finished nop ; Continue (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false (no skip) 2 if condition is true (skip is executed) and the instruction skipped is 1 word 3 if condition is true (skip is executed) and the instruction skipped is 2 words 118 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SBIS - Skip if Bit in I/O Register is Set Description: This instruction tests a single bit in an I/O Register and skips the next instruction if the bit is set. This instruction operates on the lower 32 I/O Registers - addresses 0-31. Operation: If I/O(A,b) = 1 then PC PC + 2 (or 3) else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: SBIS A,b 0 A 31, 0 b 7 PC PC + 1, Condition false - no skip PC PC + 2, Skip a one word instruction PC PC + 3, Skip a two word instruction 16-bit Opcode: 1001 1011 AAAA Abbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: waitset: sbis $10,0 ; Skip next inst. if bit 0 in Port D set rjmp waitset ; Bit not set nop ; Continue (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false (no skip) 2 if condition is true (skip is executed) and the instruction skipped is 1 word 3 if condition is true (skip is executed) and the instruction skipped is 2 words 119 0856E-AVR-11/05 SBIW - Subtract Immediate from Word Description: Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the Pointer Registers. This instruction is not available in all devices. Refer to the device specific instruction set summary. Operation: Rd+1:Rd Rd+1:Rd - K (i) (i) Syntax: Operands: Program Counter: SBIW Rd+1:Rd,K d {24,26,28,30}, 0 K 63 PC PC + 1 16-bit Opcode: 1001 0111 KKdd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - S: N V, For signed tests. V: Rdh7 *R15 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R15 Set if MSB of the result is set; cleared otherwise. Z: R15* R14 *R13 *R12 *R11* R10* R9* R8* R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $0000; cleared otherwise. C: R15* Rdh7 Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise. R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0). Example: sbiw r25:r24,1 ; Subtract 1 from r25:r24 sbiw YH:YL,63 ; Subtract 63 from the Y-pointer(r29:r28) Words: 1 (2 bytes) Cycles: 2 120 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SBR - Set Bits in Register Description: Sets specified bits in register Rd. Performs the logical ORI between the contents of register Rd and a constant mask K and places the result in the destination register Rd. Operation: Rd Rd v K (i) (i) Syntax: Operands: Program Counter: SBR Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 0110 KKKK dddd KKKK Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd after the operation. Example: sbr r16,3 ; Set bits 0 and 1 in r16 sbr r17,$F0 ; Set 4 MSB in r17 Words: 1 (2 bytes) Cycles: 1 121 0856E-AVR-11/05 SBRC - Skip if Bit in Register is Cleared Description: This instruction tests a single bit in a register and skips the next instruction if the bit is cleared. Operation: If Rr(b) = 0 then PC PC + 2 (or 3) else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: SBRC Rr,b 0 r 31, 0 b 7 PC PC + 1, Condition false - no skip PC PC + 2, Skip a one word instruction PC PC + 3, Skip a two word instruction 16-bit Opcode: 1111 110r rrrr 0bbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: sub r0,r1 sbrc r0,7 sub nop r0,r1 ; Subtract r1 from r0 ; Skip if bit 7 in r0 cleared ; Only executed if bit 7 in r0 not cleared ; Continue (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false (no skip) 2 if condition is true (skip is executed) and the instruction skipped is 1 word 3 if condition is true (skip is executed) and the instruction skipped is 2 words 122 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SBRS - Skip if Bit in Register is Set Description: This instruction tests a single bit in a register and skips the next instruction if the bit is set. Operation: If Rr(b) = 1 then PC PC + 2 (or 3) else PC PC + 1 (i) (i) Syntax: Operands: Program Counter: SBRS Rr,b 0 r 31, 0 b 7 PC PC + 1, Condition false - no skip PC PC + 2, Skip a one word instruction PC PC + 3, Skip a two word instruction 16-bit Opcode: 1111 111r rrrr 0bbb Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: sub r0,r1 ; Subtract r1 from r0 sbrs r0,7 ; Skip if bit 7 in r0 set neg r0 nop ; Only executed if bit 7 in r0 not set ; Continue (do nothing) Words: 1 (2 bytes) Cycles: 1 if condition is false (no skip) 2 if condition is true (skip is executed) and the instruction skipped is 1 word 3 if condition is true (skip is executed) and the instruction skipped is 2 words 123 0856E-AVR-11/05 SEC - Set Carry Flag Description: Sets the Carry Flag (C) in SREG (Status Register). Operation: C1 (i) (i) Syntax: Operands: Program Counter: SEC None PC PC + 1 16-bit Opcode: 1001 0100 0000 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - 1 C: 1 Carry Flag set Example: sec adc ; Set Carry Flag r0,r1 ; r0=r0+r1+1 Words: 1 (2 bytes) Cycles: 1 124 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SEH - Set Half Carry Flag Description: Sets the Half Carry (H) in SREG (Status Register). Operation: H1 (i) (i) Syntax: Operands: Program Counter: SEH None PC PC + 1 16-bit Opcode: 1001 0100 0101 1000 Status Register (SREG) and Boolean Formula: H: I T H S V N Z C - - 1 - - - - - 1 Half Carry Flag set Example: seh ; Set Half Carry Flag Words: 1 (2 bytes) Cycles: 1 125 0856E-AVR-11/05 SEI - Set Global Interrupt Flag Description: Sets the Global Interrupt Flag (I) in SREG (Status Register). The instruction following SEI will be executed before any pending interrupts. Operation: I1 (i) (i) Syntax: Operands: Program Counter: SEI None PC PC + 1 16-bit Opcode: 1001 0100 0111 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C 1 - - - - - - - I: 1 Global Interrupt Flag set Example: sei ; set global interrupt enable sleep ; enter sleep, waiting for interrupt ; note: will enter sleep before any pending interrupt(s) Words: 1 (2 bytes) Cycles: 1 126 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SEN - Set Negative Flag Description: Sets the Negative Flag (N) in SREG (Status Register). Operation: N1 (i) (i) Syntax: Operands: Program Counter: SEN None PC PC + 1 16-bit Opcode: 1001 0100 0010 1000 Status Register (SREG) and Boolean Formula: N: I T H S V N Z C - - - - - 1 - - 1 Negative Flag set Example: add sen r2,r19 ; Add r19 to r2 ; Set Negative Flag Words: 1 (2 bytes) Cycles: 1 127 0856E-AVR-11/05 SER - Set all Bits in Register Description: Loads $FF directly to register Rd. Operation: Rd $FF (i) (i) Syntax: Operands: Program Counter: SER Rd 16 d 31 PC PC + 1 16-bit Opcode: 1110 1111 dddd 1111 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: clr r16 ser r17 ; Set r17 out $18,r16 ; Write zeros to Port B nop out ; Clear r16 ; Delay (do nothing) $18,r17 ; Write ones to Port B Words: 1 (2 bytes) Cycles: 1 128 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SES - Set Signed Flag Description: Sets the Signed Flag (S) in SREG (Status Register). Operation: S1 (i) (i) Syntax: Operands: Program Counter: SES None PC PC + 1 16-bit Opcode: 1001 0100 0100 1000 Status Register (SREG) and Boolean Formula: S: I T H S V N Z C - - - 1 - - - - 1 Signed Flag set Example: add ses r2,r19 ; Add r19 to r2 ; Set Negative Flag Words: 1 (2 bytes) Cycles: 1 129 0856E-AVR-11/05 SET - Set T Flag Description: Sets the T Flag in SREG (Status Register). Operation: T1 (i) (i) Syntax: Operands: Program Counter: SET None PC PC + 1 16-bit Opcode: 1001 0100 0110 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - 1 - - - - - - T: 1 T Flag set Example: set ; Set T Flag Words: 1 (2 bytes) Cycles: 1 130 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SEV - Set Overflow Flag Description: Sets the Overflow Flag (V) in SREG (Status Register). Operation: V1 (i) (i) Syntax: Operands: Program Counter: SEV None PC PC + 1 16-bit Opcode: 1001 0100 0011 1000 Status Register (SREG) and Boolean Formula: V: I T H S V N Z C - - - - 1 - - - 1 Overflow Flag set Example: add sev r2,r19 ; Add r19 to r2 ; Set Overflow Flag Words: 1 (2 bytes) Cycles: 1 131 0856E-AVR-11/05 SEZ - Set Zero Flag Description: Sets the Zero Flag (Z) in SREG (Status Register). Operation: Z1 (i) (i) Syntax: Operands: Program Counter: SEZ None PC PC + 1 16-bit Opcode: 1001 0100 0001 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - 1 - Z: 1 Zero Flag set Example: add sez r2,r19 ; Add r19 to r2 ; Set Zero Flag Words: 1 (2 bytes) Cycles: 1 132 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SLEEP Description: This instruction sets the circuit in sleep mode defined by the MCU Control Register. Operation: Refer to the device documentation for detailed description of SLEEP usage. Syntax: Operands: Program Counter: SLEEP None PC PC + 1 16-bit Opcode: 1001 0101 1000 1000 Status Register (SREG) and Boolean Formula: I T H S V N Z C - - - - - - - - Example: mov r0,r11 ; Copy r11 to r0 ldi r16,(1<r13 ... noteq: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 144 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set SUBI - Subtract Immediate Description: Subtracts a register and a constant and places the result in the destination register Rd. This instruction is working on Register R16 to R31 and is very well suited for operations on the X, Y and Z-pointers. Operation: Rd Rd - K (i) (i) Syntax: Operands: Program Counter: SUBI Rd,K 16 d 31, 0 K 255 PC PC + 1 16-bit Opcode: 0101 KKKK dddd KKKK Status Register and Boolean Formula: I T H S V N Z C - - H: Rd3* K3+K3 *R3 +R3 *Rd3 Set if there was a borrow from bit 3; cleared otherwise S: N V, For signed tests. V: Rd7* K7 *R7 +Rd7* K7 *R7 Set if two's complement overflow resulted from the operation; cleared otherwise. N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. C: Rd7* K7 +K7 *R7 +R7* Rd7 Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise. R (Result) equals Rd after the operation. Example: subi r22,$11 ; Subtract $11 from r22 brne noteq ; Branch if r22<>$11 ... noteq: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 145 0856E-AVR-11/05 SWAP - Swap Nibbles Description: Swaps high and low nibbles in a register. Operation: R(7:4) Rd(3:0), R(3:0) Rd(7:4) (i) (i) Syntax: Operands: Program Counter: SWAP Rd 0 d 31 PC PC + 1 16-bit Opcode: 1001 010d dddd 0010 Status Register and Boolean Formula: I T H S V N Z C - - - - - - - - R (Result) equals Rd after the operation. Example: inc r1 ; Increment r1 swap r1 ; Swap high and low nibble of r1 inc r1 ; Increment high nibble of r1 swap r1 ; Swap back Words: 1 (2 bytes) Cycles: 1 146 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set TST - Test for Zero or Minus Description: Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register will remain unchanged. Operation: Rd Rd * Rd (i) (i) Syntax: Operands: Program Counter: TST Rd 0 d 31 PC PC + 1 16-bit Opcode: (see AND Rd, Rd) 0010 00dd dddd dddd Status Register and Boolean Formula: I T H S V N Z C - - - 0 - S: N V, For signed tests. V: 0 Cleared N: R7 Set if MSB of the result is set; cleared otherwise. Z: R7* R6 *R5* R4* R3 *R2* R1* R0 Set if the result is $00; cleared otherwise. R (Result) equals Rd. Example: tst r0 breq zero ; Test r0 ; Branch if r0=0 ... zero: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1 147 0856E-AVR-11/05 WDR - Watchdog Reset Description: This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given by the WD prescaler. See the Watchdog Timer hardware specification. Operation: (i) WD timer restart. (i) Syntax: Operands: Program Counter: WDR None PC PC + 1 16-bit Opcode: 1001 0101 1010 1000 Status Register and Boolean Formula: I T H S V N Z C - - - - - - - - Example: wdr ; Reset watchdog timer Words: 1 (2 bytes) Cycles: 1 148 AVR Instruction Set 0856E-AVR-11/05 AVR Instruction Set 149 0856E-AVR-11/05 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. (c) Atmel Corporation 2005. All rights reserved. Atmel (R), logo and combinations thereof, Everywhere You Are (R), AVR(R), AVR Studio (R) and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Printed on recycled paper. 0856E-AVR-11/05